#### **Spectral Line Broadening**

#### **Barry Smalley**

Astrophysics Group Keele University Staffordshire ST5 5BG United Kingdom

#### b.smalley@keele.ac.uk



### Natural Broadening

- Uncertainty of energy levels
- Usually much smaller than other broadening mechanisms.
- Resonance lines
  - Transition from ground state to first energy level
    - Often the strongest lines
      - Least energy needed

#### **Pressure Broadening**

- Collisional interactions between absorber and other particles
- Perturbs energy level:  $\Delta E \propto^{-n}$ 
  - Upper level perturbed the most

| n | Name            | Туре                      | Perturber           | Lines affected                 |
|---|-----------------|---------------------------|---------------------|--------------------------------|
| 2 | Linear Stark    | H + charged particle      | Proton,<br>electron | Hydrogen                       |
| 3 | Resonance       | Atom A + atom A           | self                | Hydrogen                       |
| 4 | Quadratic Stark | lon + charged<br>particle | electrons           | Most lines,<br>esp. hot stars  |
| 6 | Van der Waals   | Atom A + atom B           | Usually<br>hydrogen | Most lines,<br>esp. cool stars |

#### **Damping Constants**



Sodium line for Solar model. From Gray 1992oasp.book.....G

### Damping Constants

- Lorentz (damping) profile
- Values given in line lists (e.g. VALD)
- What are their accuracies?
  - Some transition probabilities (gf values) have an accuracy (e.g. NIST)
  - Paul Barklem's review 2016A&ARv..24....9B Accurate abundance analysis of late-type stars: advances in atomic physics

#### **Collisional Broadening**

- Ryan 1998 (A&A, 331, 1051)
  - Even weak lines can be affected by damping
  - Damping errors depend on excitation potential
    - errors in microturbulence and effective temperature



#### Effect of damping



- Errors in damping constants
  - van der Waals (left) and Stark (right)
  - VDW could lead to errors in microturbulence

## Astrophysical gf values

- Pros:
  - For Sun well known parameters
  - Differential results
    - Improved precision

- Cons:
  - Usually assumes shift only due to gf values
    - What about damping, microturbulence, etc.?
- Widely-used and can give good results
  - But, values do depend on model and assumed parameters.

#### Astrophysical gf Systematics



- Astrophysical gf values created at 6000 K but with +20% error in van der Waals damping.
  - Plots show difference in at 6500 K.

#### Solar Microturbulence Value

- Edvardsson et al. 1993 (A&A, 275, 101) 1.15 km/s
- Bruntt et al. 2010 0.95 km/s
- Valenti & Fischer 2005 0.85 km/s
- Santos et al. 2004, (A&A, 415, 1153) 1.00 km/s
- Magain (1984) 0.85 km/s (centre of solar disk)
  - From Blackwell et al. 1984, (A&A,132, 236) using Holweger & Mueller 1974, (SoPh, 39, 19) Solar model

Which to use in Astrophysical gf determination?

#### Astrophysical gf Systematics



- Astrophysical gf values created at 6000 K but with assumed microturbulence too low by 0.1 km/s.
  - 0.9 km/s instead of "true" 1.0 km/s
  - Plots show difference at 6500 K

## Zeeman and Hyperfine Splitting

- Zeeman
  - Splitting of energy levels due to magnetic field
- Hyperfine
  - Intrinsic due to nuclear structure
- Isotopes
  - Most line lists assume solar isotopic mix.

#### Hyperfine Structure



- The splitting of energy levels in odd atomic elements
  - Multiple components to spectral lines
    - See Wahlgren, 2005, MSAIS, 8, 108

#### Non-solar Lithium isotopic ratio



14/33

#### **Convection and turbulence**

- Effects the atmosphere of A stars and cooler.
- Visible as Solar Granulation
  - Surface convection cells
- Indirectly inferred via
  - Microturbulence
  - Macroturbulence
  - Line bisector curvatures
- Free parameters in 1-d models
  - Can vary with depth in atmosphere

#### **Convection Models**



**Fig. 1** Schematic bubble representations of convection treatments. In mixing-length theory  $(\mathbf{a})$ , a single bubble rises within the atmosphere, while in turbulent convection bubbles of varying sizes rise  $(\mathbf{b})$ . In  $(\mathbf{c})$  we have overshooting above the convection zone

#### **Balmer profile variations**



- Formed at different depths within atmosphere
  - probe differing parts of atmospheric structure
- Changing the efficiency of convection, by increasing mixing length, has significant effect on computed profile

### Balmer profile sensitivities

- H $\alpha$  insensitive to mixing-length
- $H\beta$  sensitive to mixing-length
- Both lines affected by overshooting
  - sensitive to temperature and metallicity
  - surface gravity sensitivity for hotter stars

Van't Veer & Megessier, 1996, A&A 309, 879

#### Microturbulence

- A *free* parameter introduced to ensure that abundances from weak and strong lines agree
- Extra source of broadening
  - added to thermal broadening
- Small scale motions within the atmosphere

#### **Microturbulence Variations**



- Microturbulence varies with  $T_{eff}$ 
  - increases with increasing temperature
    - peaking around mid-A type

#### **Microturbulence Calibrations**



Gray 2001 fit by Smalley 2004 IAUS 224, 131 Sousa 2011 is fit given in 2013ApJ...768...79G Valenti & Fischer, 2005, ApJS,159, 141 Bruntt et al., 2010, MNRAS, 405, 1907

Valenti &

"strongly correlated

found:

Fischer 2005

values of  $v_{\rm mic}$ 

suggesting that

v<sub>mic</sub> and [M/H]

are partially

degenerate."

value.

Adopted fixed

and [M/H],

#### Microturbulence in A and B stars



22/33

#### **Solar Granulation**



http://zeus.nascom.nasa.gov/~dmueller/gran\_intro.htm

#### Macroturbulence

- Extended shallow wings
- Strong in giants and supergiants
- Seen in A-type stars
- Even B supergiants
  - Przybilla et al., 2006, A&A, 445, 1099
  - Large-scale velocities within atmosphere



Wavelength



D.F. Gray (2008) Book

24/33

#### Gray's Radial-Tangential Model



Fig 17.5 D.F. Gray (2008) Book

- Dopper broadening in both radial and tangential directions
  - 1/2 surface radial
  - <sup>1</sup>/<sub>2</sub> surface tangential
- Assume same velocity for both ( $\zeta_{RT}$ )

A free parameter

#### Macroturbulence in solar-type Stars



# No need for microturbulence and macroturbulence

- Numerical simulations avoid the need for such free parameters (e.g. Asplund et al., 2000, A&A 359, 729)
  - not turbulent motions, but velocity gradients

## No longer free parameters and should be constrained when using 1-d models



http://www.aip.de/groups/sternphysik/stp/2d\_convect.html

### **Spectral Line Shifts**



http://www.astro.uwo.ca/~dfgray/Granulation.html

- Position of line cores shifted by velocity fields
  - Vary with depth
  - Time variable
    - "noise" in radial velocity measurements

#### **A Convection Recipe**



Smalley, 2004, IAUS 224, 131

#### **Stellar Rotation**

- Doppler shifts due to stellar rotation
- Characteristic broadening shape.
- Normally assume solidbody rotation of a spherical star
- Observe projected rotation velocity (v sin i)



Fig. 1 Schematic view of the Doppler broadening of a spectral line due to rotation

#### 2014dapb.book..121C

#### Determining v sin i



Fig. 4 Part of an observed spectrum with several synthetic spectra overimposed. Each synthetic spectrum was computed for different value of rotational velocity. The best fit is achieved for  $v \sin i$  =  $7 \text{ km s}^{-1}$ 

#### 2014dapb.book..121C

#### Effect of Resolution



- Spectrograph resolution can be important.
- Ensure that the correct resolution is used when determining v sin I.

2014dapb.book..121C

### Summary

- Some broadening mechanisms are fixed for all stars and come in the linelists used:
  - Damping Constants
    - Natural (Radiative)
    - Pressure (Stark, VDW)
- Other mechanisms depend on the star.
  - Thermal (Doppler) Broadening
  - Microturbulence
  - Macroturbulence
  - Rotation
- Some are (or can be) free parameters
  - even when they ought not to be!