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Natural Broadening

● Uncertainty of energy levels
● Usually much smaller than other broadening 

mechanisms.
● Resonance lines

● Transition from ground state to first energy level
– Often the strongest lines

● Least energy needed
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Pressure Broadening

● Collisional interactions between absorber and 
other particles

● Perturbs energy level: 
● Upper level perturbed the most

n Name Type Perturber Lines affected

2 Linear Stark H + charged particle Proton, 
electron

Hydrogen

3 Resonance Atom A + atom A self Hydrogen

4 Quadratic Stark Ion + charged 
particle

electrons Most lines,
esp. hot stars

6 Van der Waals Atom A + atom B Usually 
hydrogen

Most lines,
esp. cool stars

Δ E∝−n
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Damping Constants

Sodium line for Solar model.  From Gray 1992oasp.book.....G
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Damping Constants

● Lorentz (damping) profile
● Values given in line lists (e.g. VALD)
● What are their accuracies?

● Some transition probabilities (gf values) have an 
accuracy (e.g. NIST)

● Paul Barklem's review 2016A&ARv..24....9B 
Accurate abundance analysis of late-type stars: 
advances in atomic physics
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Collisional Broadening 

● Ryan 1998 (A&A, 331, 1051)

● Even weak lines can be affected by damping
● Damping errors depend on excitation potential

– errors in microturbulence and effective temperature
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Effect of damping

● Errors in damping constants
– van der Waals (left) and Stark (right)

● VDW could lead to errors in microturbulence

Teff 6000 K
Log g 4.5
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Astrophysical gf values

● Pros:
● For Sun well known 

parameters
● Differential results

– Improved precision

● Cons:
● Usually assumes shift 

only due to gf values
– What about damping, 

microturbulence, etc.?

● Widely-used and can give good results
● But, values do depend on model and assumed 

parameters.
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Astrophysical gf Systematics

● Astrophysical gf values created at 6000 K but 
with +20% error in van der Waals damping.
● Plots show difference in at 6500 K.
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Solar Microturbulence Value

● Edvardsson et al. 1993 (A&A, 275, 101) 1.15 km/s
● Bruntt et al. 2010 0.95 km/s
● Valenti & Fischer 2005  0.85 km/s
● Santos et al. 2004, (A&A, 415, 1153) 1.00 km/s
● Magain (1984)  0.85 km/s (centre of solar disk)

● From Blackwell et al. 1984, (A&A,132, 236) using Holweger 
& Mueller 1974, (SoPh, 39, 19) Solar model

Which to use in Astrophysical gf determination?
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Astrophysical gf Systematics

● Astrophysical gf values created at 6000 K but with 
assumed microturbulence too low by 0.1 km/s.

– 0.9 km/s instead of “true” 1.0 km/s
● Plots show difference at 6500 K
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Zeeman and Hyperfine Splitting

● Zeeman
● Splitting of energy levels due to magnetic field

● Hyperfine
● Intrinsic due to nuclear structure

● Isotopes
● Most line lists assume solar isotopic mix.
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Hyperfine Structure

● The splitting of energy levels in odd atomic elements
● Multiple components to spectral lines

– See Wahlgren, 2005, MSAIS, 8, 108

Solar Mn I 
line at 5420Å
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Non-solar Lithium isotopic ratio

2003A&A...409..707S

HD 101065 (Przybylski's star)

7Li 6Li

http://cdsads.u-strasbg.fr/abs/2003A%26A...409..707S
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Convection and turbulence

● Effects the atmosphere of A stars and 
cooler.

● Visible as Solar Granulation
● Surface convection cells

● Indirectly inferred via
● Microturbulence
● Macroturbulence
● Line bisector curvatures

● Free parameters in 1-d models
● Can vary with depth in atmosphere
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Convection Models

2014dapb.book..131S
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Balmer profile variations

● Formed at different depths within atmosphere
● probe differing parts of atmospheric structure

● Changing the efficiency of convection, by 
increasing mixing length, has significant effect on 
computed profile

Teff = 7000 K, log g = 4.0
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Balmer profile sensitivities

● H insensitive to mixing-length

● H sensitive to mixing-length

● Both lines affected by overshooting
– sensitive to temperature and metallicity
– surface gravity sensitivity for hotter stars

Van't Veer & Megessier, 1996, A&A 309, 879
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Microturbulence

● A free parameter introduced to ensure that 
abundances from weak and strong lines agree

● Extra source of broadening
– added to thermal broadening

● Small scale motions within the atmosphere
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Microturbulence Variations

Smalley 2004, IAUS 224, 
131 based on R.O. Gray et 
al. 2001, AJ, 121, 2159

● Microturbulence varies with Teff
● increases with increasing 

temperature
– peaking around mid-A type

Landstreet et al., 2009,
A&A, 503, 973

Am Stars

HgMn Stars
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Microturbulence Calibrations

Gray 2001 fit by Smalley 2004 IAUS 224, 131
Sousa 2011 is fit given in 2013ApJ...768...79G

Valenti & 
Fischer 2005 
found:
“strongly 
correlated 
values of vmic 
and [M/H], 
suggesting that
vmic and [M/H] 
are partially 
degenerate.” 
Adopted fixed 
value.

Valenti & Fischer, 2005, ApJS,159, 141
Bruntt et al., 2010, MNRAS, 405, 1907
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Microturbulence in A and B stars
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Solar Granulation

http://zeus.nascom.nasa.gov/~dmueller/gran_intro.htm
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Macroturbulence

● Extended shallow wings
● Strong in giants and 

supergiants
● Seen in A-type stars
● Even B supergiants

● Przybilla et al., 2006, 
A&A, 445, 1099

Large-scale velocities Large-scale velocities 
within atmospherewithin atmosphere

D.F. Gray (2008) Book
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Gray's Radial-Tangential Model

Fig 17.5 D.F. Gray (2008) Book

● Dopper broadening in 
both radial and 
tangential directions
● ½ surface radial
● ½ surface tangential

● Assume same velocity 
for both (ζRT)

A free parameter
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Macroturbulence in solar-type Stars

2014MNRAS.444.3592D
Calibration using

 Kepler asteroseismic
v sin i values

Calibration
for A/F stars?
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No need for microturbulence and 
macroturbulence

● Numerical simulations avoid the need for such 
free parameters (e.g. Asplund et al., 2000, A&A 359, 729)

● not turbulent motions, but velocity gradients

No longer free parameters and should be No longer free parameters and should be 
constrained when using 1-d modelsconstrained when using 1-d models

http://www.aip.de/groups/sternphysik/stp/2d_convect.html
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Spectral Line Shifts

● Position of line cores 
shifted by velocity 
fields
● Vary with depth
● Time variable

– “noise” in radial 
velocity measurements

http://www.astro.uwo.ca/~dfgray/Granulation.html
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A Convection Recipe

Smalley, 2004, IAUS 224, 131
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Stellar Rotation

● Doppler shifts due to 
stellar rotation

● Characteristic 
broadening shape.

● Normally assume solid-
body rotation of a 
spherical star

● Observe projected 
rotation velocity (v sin i)

2014dapb.book..121C
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Determining v sin i

2014dapb.book..121C



32/33

Effect of Resolution

● Spectrograph 
resolution can be 
important.

● Ensure that the 
correct resolution is 
used when 
determining v sin I.

2014dapb.book..121C
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Summary

● Some broadening mechanisms are fixed for all stars and come in the 
linelists used:
● Damping Constants

– Natural (Radiative)
– Pressure (Stark, VDW)

● Other mechanisms depend on the star.
● Thermal (Doppler) Broadening
● Microturbulence
● Macroturbulence
● Rotation

● Some are (or can be) free parameters
● even when they ought not to be!
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